Какую максимальную скорость может развить корабль в космосе?

Номер 9: авианосец класса «Джеральд Р. Форд»

В начале этой статьи я упоминал, что каждая страна пытается сделать свой собственный авианосец как можно более крупным. На сегодняшний день самым большим является как раз «Джеральд Р. Форд». Он имеет водоизмещение 100 000 тонн. Интересно, что при всём при этом он имеет достаточно быстрый ход – 30 узлов.

  • Имя: Gerald R. Ford-Класс
  • Страна: Соединенные Штаты Америки
  • Максимальная скорость: 30 узлов [34.52 миль / ч или 55.57 км / ч]
  • Вытерпели скорость: такие же как максимальная скорость
  • Водоизмещение: 100 000 тонн при полной нагрузке
  • Введен в эксплуатацию: 2017
  • Статус: в активной службе

Корабли класса Ford планируются как замена классу Nimitz, который сам по себе составляет 97 000 тонн, но уже считается устаревшим. Внедрение новых технологий 21-го века в сочетании с новейшей системой вооружения делает носители класса Ford более смертоносными.

Первый космический корабль: история создания

Отцом космонавтики справедливо считается Циолковский. На основе его учений Годдрадпостроил ракетный двигатель.

Ученые, которые трудились в Советском Союзе, стали первыми, кто сконструировал и смог запустить искусственный спутник. Также они стали первыми, кто изобрел возможность запуска в космос живого существа. Штаты осознают, что Союз стал первым, кто создал летательный аппарат, способный выйти в космос с человеком. Отцом ракетостроения справедливо называют Королева, который вошел в историю как тот, кто придумал, как преодолеть земное притяжение, и смог создать первый пилотируемый космический корабль. Сегодня даже малыши знают, в каком году запустили первый корабль с человеком на борту, но мало кто помнит о вкладе Королева в этот процесс.

Экипаж и его безопасность во время полета

Главная задача сегодня — безопасность экипажа, ведь он проводит много времени на высоте полета

При строении летательного устройства важно, из какого металла его делают. В ракетостроении используются следующие типы металлов:

  1. Алюминий ‒ позволяет значительно увеличить размеры космолета, поскольку отличается легкостью.
  2. Железо ‒ замечательно справляется со всеми нагрузками на корпус корабля.
  3. Медь ‒ обладает высокойтеплопроводимостью.
  4. Серебро ‒ надежно связывает медь и сталь.
  5. Из титановых сплавов изготавливают баки для жидкого кислорода и водорода.

Современная система жизнеобеспечения позволяет создать привычную для человека атмосферу. Многие мальчишки видят, как они летают в космосе, забывая об очень большой перегрузке космонавта при старте.

Энергичный град

При скорости в несколько сотен миллионов километров в час каждая пылинка в космосе, от атомов водорода до микрометеоритов, становится мощной пулей, которая устремляется в корпус аппарата. «Когда вы движетесь с высокой скоростью, с такой же высокой скоростью движется и частица по отношению к вам», — говорит Артур Эдельштейн, занимающийся эффектами влияния атомов космического водорода на сверхбыстрые космические путешествия.

Хотя на один кубический сантиметр в космосе присутствует примерно один атом, космический водород превратится в бомбардировку интенсивной радиации. Этот водород вольется в субатомные частицы, которые будут проходить сквозь корабль, облучая экипаж и оборудование. При скорости в 95% световой, облучение почти мгновенно станет смертельным. Корабль раскалится до температуры плавления любого мыслимого материала, а вода в телах членов экипажа моментально вскипит. «Это довольно неприятные проблемы», — едко замечает Эдельштейн.

Вместе с отцом он подсчитал, что в отсутствие гипотетического магнитного экрана, который будет отражать весь смертельный водород, звездный корабль сможет двигаться лишь в половину скорости света, не подвергая опасности членов экипажа.

Орбитальные станции

Станция — это тот же спутник, но предназначенный для работы людей на его бор­ту. К станции может пристыковываться космический корабль с экипажем и груза­ми. Пока в космосе работали только три долгосрочные станции: американский «Скайлэб» и российские «Салют» и «Мир». «Скайлэб» был выведен на орбиту в 1973 г. Ни его борту последовательно работали три экипажа. Станция прекратила свое существование в 1979 г.

Орбитальные станции играют огромную роль в изучении влияние невесомос­ти на организм человека. Станции будущего, такие как «Фридом», которую американцы строят сейчас при участии специалистов из Европы, Японии и Канады, будут использоваться для очень долго­срочных экспериментов или для промышленного производства в космосе.

Когда космонавт выходит из станции или корабля в открытый космос, он надевает скафандр. Внутри скафандра искусственно создается давление, равное атмосферному. Внутренние слои скафандра охлаждаются жидкостью. Приборы следят за давлением и содержанием кислорода внутри. Стекло шлема очень прочное оно выдерживает удары мелких камешков — микрометеоритов.

Космические ракеты

Современная космическая ракета представляет собой сложное сооружение, состоящее из сотен тысяч и миллионов деталей, каждая из которых играет предназначенную ей роль. Но с точки зрения механики разгона ракеты до необходимой скорости всю начальную массу ракеты можно разделить на две части: 1) масса рабочего тела и 2) конечная масса, остающаяся после выброса рабочего тела. Эту последнюю часто называют «сухой» массой, так как рабочее тело в большинстве случаев представляет собой жидкое топливо. «Сухая» масса (или, если угодно, масса «пустой», без рабочего тела, ракеты) состоит из массы конструкции и массы полезной нагрузки. Под конструкцией следует понимать не только несущую конструкцию ракеты, ее оболочку и т. п., но и двигательную систему со всеми ее агрегатами, систему управления, включающую органы управления, аппаратуру навигации и связи, и т. п.,- одним словом, все то, что обеспечивает нормальный полет ракеты. Полезная нагрузка состоит из научной аппаратуры, радиотелеметрической системы, корпуса выводимого на орбиту космического аппарата, экипажа и системы жизнеобеспечения космического корабля и т. п. Полезная нагрузка — это то, без чего ракета может совершить нормальный полет.

Набору скорости ракеты благоприятствует то, что по мере истечения рабочего тела масса ракеты уменьшается, благодаря чему при неизменной тяге непрерывно растет реактивное ускорение. Но, к сожалению, ракета состоит не из одного лишь рабочего тела. По мере истечения рабочего тела освободившиеся баки, лишние части оболочки и т. д. начинают обременять ракету мертвым грузом, затрудняя ее разгон. Целесообразно в некоторые моменты отделять эти части от ракеты. Построенная таким образом ракета называется составной. Часто составная ракета состоит из самостоятельных ракет- ступеней (благодаря этому из отдельных ступеней можно составлять различные ракетные комплексы), соединенных последовательно. Но возможно и параллельное соединение ступеней, бок о бок. Наконец, существуют проекты составных ракет, в которых последняя ступень входит внутрь предыдущей, та заключена внутри предшествующей и т. д.; при этом ступени имеют общий двигатель и уже не являются самостоятельными ракетами. Существенный недостаток последней схемы заключается в том, что после отделения отработавшей ступени резко возрастает реактивное ускорение, так как двигатель остался прежним, тяга поэтому не изменилась, а разгоняемая масса ракеты резко уменьшилась. Это затрудняет точность наведения ракеты и предъявляет повышенные требования к прочности конструкции. При последовательном же соединении ступеней вновь включаемая ступень обладает меньшей тягой и ускорение не изменяется резким скачком. Пока работает первая ступень, мы можем рассматривать остальные ступени вместе с истинной полезной нагрузкой в качестве полезной нагрузки первой ступени. После отделения первой ступени начинает работать вторая ступень, которая вместе с последующими ступенями и истинной полезной нагрузкой образует самостоятельную ракету («первую субракету»). Для второй ступени все последующие ступени вместе с истинным полезным грузом играют роль собственной полезной нагрузки и т. д. Каждая субракета добавляет к уже имеющейся скорости собственную идеальную скорость, и в результате конечная идеальная скорость многоступенчатой ракеты складывается из суммы идеальных скоростей отдельных субракет.

Ракета является весьма «затратным» транспортным средством. Ракеты-носители космических аппаратов «транспортируют», главным образом, топливо, необходимое для работы их двигателей и собственную конструкцию, состоящую в основном из топливных контейнеров и двигательной установки. На долю полезной нагрузки приходится лишь малая часть (1,5-2,0%) стартовой массы ракеты.

Составная ракета позволяет более рационально использовать ресурсы за счет того, что в полете ступень, выработавшая свое топливо, отделяется, и остальное топливо ракеты не тратится на ускорение конструкции отработавшей ступени, ставшей ненужной для продолжения полета.

Шэньчжоу (Китай, 2003 год)

Шэньчжоу — пилотируемый космический корабль Китая, разработанный по технологиям “Союза”. Очень сильно напоминал советско-российский корабль, но отличался габаритами. 

Фото: STR / AFP / Китайский корабль Шэньчжоу-9 с тайконавтами на борту на подлете к модулю космической станции Tiangong-1

Поднебесная использовала аппарат для пилотируемых полетов с 2003 по 2016 годы. За это время КНР осуществила 6 запусков: тайконавты (так в Китае называют космонавтов) выходили в открытый космос, отрабатывали технологии сближения с китайской космической лабораторией Тяньгун-1 и Тяньгун-2, проводили стыковки с ними.  

Достижение скорости света

Примерный внешний вид устройства Breakthrough Starshot

Работы над созданием космических кораблей, способных разгоняться до скорости света, уже идут. Например, авторы проекта Breakthrough Starshot разрабатывают устройство, которое сможет набрать хотя бы 20% от скорости света. Когда он будет создан, его отправят к удаленной от нас на 4,37 световых лет звездной системе Альфы Центавра. В идеале, полет должен занять около 20 лет и еще 5 лет устройству понадобится для того, чтобы отправить нам уведомление о своем прибытии. На данный момент ожидается, что устройство будет представлять собой небольшую пластинку, которая ускоряется за счет направленных лазерных лучей. Подробнее о нем и аналогичном проекте NASA можно почитать в этом материале.

Космические скорости

Чтобы попасть в космос, ракета должна выйти за пределы атмосферы. Если ее скорость будет недостаточна, она просто упадет на Землю, из-за действия силы тяготения. Скорость, необходимую для выхода в космос, называют первой космической скоростью. Она составляет 40000 км/ч. На орбите космический корабль огибает Землю с орбитальной скоростью. Орбитальная скорость корабля зависит от его расстояния до Земли. Когда космический корабль летит по орбите, он, в сущности, просто падает, но не может упасть, так как теряет высоту как раз настолько, насколько под ним уходит вниз, закругляясь, земная поверхность.

Какой должна быть скорость корабля для полета на Луну?

Для полета корабля на Луну он должен стартовать до орбитальной скорости в 29. тыс. км в час, а потом нарастать примерно до 40 тыс. км в час.

Космический корабль при такой скорости может удалиться на расстоянии, на котором на него уже будет сильнее притяжение Луны, нежели Земли. Современная техника позволяет разрабатывать корабли, которые соответствуют вышеупомянутой скорости перемещения. Но если двигатели корабля не будут действовать, он разгонится притяжением Луны и просто упадет на нее с большой силой, разрушив корабль. По этой причине, если в самом начале пути реактивные двигатели ускоряли космический корабль в направлении к Луне, то когда лунное притяжение сравнивалось с земным, двигатели начинали действовать в противоположном направлении. Таким образом, обеспечивалась мягкая посадка на Луну, при которой все люди на корабле оставались невредимыми.

На Луне нет воздуха, поэтому находится на ней можно исключительно в специальных скафандрах. Первым человеком, который спустился на поверхность Луны, стал американец Нил Армстронг, и это произошло в 1969 году. Тогда произошло первое знакомство человечества с составом лунного грунта. Его изучение позволило лучше понять историю образования Солнечной системы. Тогда геологи надеялись найти на Луне какие-то ценные вещества, которые можно было бы добывать.

Масса Земли существенно превышает массу Луны. Значит, взлететь с последней будет проще и дорога в дальний космос тоже осуществится легче. Не исключено, что в дальнейшем человечество будет использовать эту возможность. Скорость вылета на орбиту намного меньше и составляет 6120 км в час или 1,7 км в секунду.

Законы Кеплера

Прежде чем рассматривать орбиты космических аппаратов, рассмотрим законы Кеплера, которые их описывают.

Иоганн Кеплер обладал чувством прекрасного. Всю свою сознательную жизнь он пытался доказать, что Солнечная система представляет собой некое мистическое произведение искусства. Сначала он пытался связать ее устройство с пятью правильными многогранниками классической древнегреческой геометрии. (Правильный многогранник — объемная фигура, все грани которой представляют собой равные между собой правильные многоугольники.) Во времена Кеплера было известно шесть планет, которые, как полагалось, помещались на вращающихся «хрустальных сферах». Кеплер утверждал, что эти сферы расположены таким образом, что между соседними сферами точно вписываются правильные многогранники. Между двумя внешними сферами — Сатурна и Юпитера — он поместил куб, вписанный во внешнюю сферу, в который, в свою очередь, вписана внутренняя сфера; между сферами Юпитера и Марса — тетраэдр (правильный четырехгранник) и т. д. Шесть сфер планет, пять вписанных между ними правильных многогранников — казалось бы, само совершенство?

Увы, сравнив свою модель с наблюдаемыми орбитами планет, Кеплер вынужден был признать, что реальное поведение небесных тел не вписывается в очерченные им стройные рамки. Единственным пережившим века результатом того юношеского порыва Кеплера стала модель Солнечной системы, собственноручно изготовленная ученым и преподнесенная в дар его патрону герцогу Фредерику фон Вюртембургу. В этом прекрасно исполненном металлическом артефакте все орбитальные сферы планет и вписанные в них правильные многогранники представляют собой не сообщающиеся между собой полые емкости, которые по праздникам предполагалось заполнять различными напитками для угощения гостей герцога.

Лишь переехав в Прагу и став ассистентом знаменитого датского астронома Тихо Браге, Кеплер натолкнулся на идеи, по-настоящему обессмертившие его имя в анналах науки. Тихо Браге всю жизнь собирал данные астрономических наблюдений и накопил огромные объемы сведений о движении планет. После его смерти они перешли в распоряжение Кеплера. Эти записи, между прочим, имели большую коммерческую ценность по тем временам, поскольку их можно было использовать для составления уточненных астрологических гороскопов (сегодня об этом разделе ранней астрономии ученые предпочитают умалчивать).

Обрабатывая результаты наблюдений Тихо Браге, Кеплер столкнулся с проблемой, которая и при наличии современных компьютеров могла бы показаться кому-то трудноразрешимой, а у Кеплера не было иного выбора, кроме как проводить все расчеты вручную. Конечно же, как и большинство астрономов его времени, Кеплер уже был знаком с гелиоцентрической системой Коперника и знал, что Земля вращается вокруг Солнца, о чем свидетельствует и вышеописанная модель Солнечной системы. Но как именно вращается Земля и другие планеты? Представим проблему следующим образом: вы находитесь на планете, которая, во-первых, вращается вокруг своей оси, а во-вторых, вращается вокруг Солнца по неизвестной вам орбите. Глядя в небо, мы видим другие планеты, которые также движутся по неизвестным нам орбитам. И задача — определить по данным наблюдений, сделанных на нашем вращающемся вокруг своей оси вокруг Солнца земном шаре, геометрию орбит и скорости движения других планет. Именно это, в конечном итоге, удалось сделать Кеплеру, после чего, на основе полученных результатов, он и вывел три своих закона!

Первый закон описывает геометрию траекторий планетарных орбит: каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце. Из школьного курса геометрии — эллипс представляет собой множество точек плоскости, сумма расстояний от которых до двух фиксированных точек — фокусов — равна константе. Или иначе — представьте себе сечение боковой поверхности конуса плоскостью под углом к его основанию, не проходящей через основание, — это тоже эллипс. Первый закон Кеплера как раз и утверждает, что орбиты планет представляют собой эллипсы, в одном из фокусов которых расположено Солнце. Эксцентриситеты (степень вытянутости) орбит и их удаления от Солнца в перигелии (ближайшей к Солнцу точке) и апогелии (самой удаленной точке) у всех планет разные, но все эллиптические орбиты роднит одно — Солнце расположено в одном из двух фокусов эллипса. Проанализировав данные наблюдений Тихо Браге, Кеплер сделал вывод, что планетарные орбиты представляют собой набор вложенных эллипсов. До него это просто не приходило в голову никому из астрономов.

Номер 7: китайский авианосец «Ляонин»

Братский корабль «Адмирала Кузнецова» находится следующим в списке по причинам, которые легко понять. Ведь у него были бы практически те же параметры, что и у самого Кузнецова. «Ляонин» является первым авианосцем Китая и присоединяется к военно-морскому флоту в то время, когда Китай намерен продемонстрировать свою силу в море. Кстати, транспортировка корабля из Украины в Китай была тем ещё приключением. Всё движение заняло 20 месяцев и в процессе обанкротило компанию, которая предоставила буксиры.

  • Имя: Liaoning
  • Страна: Китай
  • Максимальная скорость: 32 узла [36.81 миль / ч или 59.28 км / ч]
  • Поддерживаемая скорость: 29 узлов [ 33.36 миль / ч или 53.71 км / ч]
  • Водоизмещение: 58 000 тонн
  • Введен в эксплуатацию: 2012 год
  • Статус: в активной службе

«Ляонин» значительно крупнее авианосцев, принадлежащих Индии, однако у Индии их больше. Тем не менее, Китай и Индия, оба будут увеличивать свои собственные авианосцы в ближайшем будущем, и если они будут быстрыми, то они будут помещены в этот список. Посмотрим, что из этого выйдет.

SpaceX против Роскосмоса

В мае 2020 года SpaceX доказала, что отправку людей на МКС можно доверить даже частной компании. Она успешно доставила астронавтов Боба Бенкена (Bob Behnken) и Дага Херли (Doug Hurley) и взяла с NASA гораздо меньше денег, чем Роскосмос. Ведь полет туда и обратно на российских «Союзах» обходился американцам в целых 85 миллионов долларов за человека. А стоимость одного места на Crew Dragon оценивается примерно в 55 миллионов долларов.

Стыковка «Союза» с МКС

В то время как на сайте roscosmos.ru появился раздел со стихами Дмитрия Рогозина (главы Роскосмоса), компания SpaceX смогла поместить на корабле сразу 3 человека. А в российские «Союзы» помещалось максимум 3 человека. То есть, если бы NASA требовалось за один раз отправить на МКС четырех космонавтов, одному из них потребовалось бы ждать следующего полета. Сейчас аэрокосмическое агентство может доставлять на станцию больше людей за меньшие деньги.

Знаменитый список уже обновлен

Тот факт, что компания SpaceX уже официально начала выполнять заказы на регулярные пассажирские рейсы в космос, доказывает, что «батут работает». Напомним, что в 2014 году Дмитрий Рогозин в ответ на санкции против своего космодрома предложил американским коллегам «доставлять своих астронавтов на МКС с помощью батута». После первого запуска Crew Dragon с астронавтами на борту в мае 2020 года, Илон Маск во время конференции со смехом подчеркнул, что «батут работает».

Твит Дмитрия Рогозина найти не удалось, но в Интернете есть скриншот

Дональд Трамп и Джо Байден уже поздравили SpaceX с очередным успехом. Комментариев со стороны Роскосмоса пока замечено не было. На данный момент лишь известно, что российские космонавты смогут полетать на корабле Crew Dragon летом 2021 года. Об этом, по крайней мере, сообщила руководительница отдела пилотируемых полетов NASA Кэти Людерс (Kathy Lueders).

Первая космическая скорость

Первая космическая скорость или Круговая скорость V1 — скорость, которую необходимо придать объекту без двигателя, пренебрегая сопротивлением атмосферы и вращением планеты, чтобы вывести его на круговую орбиту с радиусом, равным радиусу планеты.

Иными словами, первая космическая скорость — это минимальная скорость, при которой тело, движущееся горизонтально над поверхностью планеты, не упадёт на неё, а будет двигаться по круговой орбите.

Формула

где   G — гравитационная постоянная (6,67259·10−11 м³·кг−1·с−2), — первая космическая скорость. Подставляя численные значения (для Земли M = 5,97·1024 кг, R = 6 378 км), найдем

7,9 км/с

Первую космическую скорость можно определить через ускорение свободного падения

Аполлон (США, 1968)

В рамках программы «Аполлон» для доставки людей на Луну был разработан корабль, состоящий из командно-служебного отсека и лунного модуля. Этот аппарат создавали на основе технологий, которые применялись в проектировании капсул “Меркурий” и “Джемини”.

Фото: NASA / Астронавт Алан Бин покидает командный модуль Аполлона-12 после приводнения, 1969 год

В командном отсеке (КО) на пути от Земли к Луне и обратно находился экипаж из трех астронавтов. 

Служебный отсек (СО) нес основную двигательную установку, топливо, в нем размещалась часть системы связи. СО обеспечивал все маневры корабля на траектории полета к Луне, коррекцию траектории, выход на орбиту вокруг спутника, переход с лунной орбиты на траекторию полета к Земле. Энергоустановка модуля снабжала экипаж электроэнергией и питьевой водой, из установленных в нем баллонов подавался кислород в систему жизнеобеспечения корабля.

Статья по теме: Будущее, которое не наступило. Аполлон-1: невыполненная миссия

Лунный модуль (ЛМ) предназначался для прилунения и для старта с лунной поверхности, на орбите стыковался к командно-служебному модулю.  

Первый запуск “Аполлона” с экипажем должен был состояться в 1967 году, но на испытаниях за неделю до старта произошла катастрофа, во время которой три астронавта — Роджер Чаффи, Вирджил Гриссом и Эдвард Уайт, погибли. Расследование аварии заняло 21 месяц, лишь после заключения экспертов и разрешения политиков NASA возобновило лунную программу. 

Статья по теме: Аполлон-13: пилотируемый полет к Луне, который потерпел неудачу

В 1968 году прошел первый пилотируемый полет в рамках программы “Аполлон” (“Аполлон-7”). Проверить корабль на орбите Земли агентство отправило дублирующий экипаж “Аполлона-1” в составе астронавтов Уолтера Ширра, Донна Айзли, Уолтера Каннингема.

В 1969 году астронавты “Аполлона-11” стали первыми людьми, ступившими на поверхность Луны. Последний пилотируемый полет программы состоялся в 1972 году (“Аполлон-17”). 

С 1969 по 1972 год в рамках программы “Аполлон” астронавты выполнили 6 высадок на наш спутник. Всего на поверхность Луны ступило 12 человек. 

Космические зонды

Зонды — это беспилотные космические аппараты, посылаемые на дальние расстояния. Они побывали на всех планетах, кроме Плутона. Зонд может лететь до места на­значения долгие Годы. Когда он подлетает к нужному небесному телу, то выходит на орбиту вокруг него и посылает на Землю добытую информацию. «Миринер-10», единственный зонд, побывавший на Марсе.

Некоторые зонды предназначены для посадки на поверхность другой планеты, либо они оснащены спускаемыми аппаратами, сбрасываемыми на планету. Спускаемый аппарат может собрать образцы грунта и доставить их на Землю для исследований. В 1966 году впервые на поверхность Луны опустился космический аппарат — зонд «Луна-9». После посадки он раскрылся, как цветок, и начал съемки.

Ракетные двигатели

Основным и почти единственным средством передвижения в мировом пространстве является ракета, которая для этой цели была впервые предложена в 1903 г. К. Э. Циолковским. Законы ракетного движения представляют собой один из краеугольных камней теории космического полета.

Космонавтика обладает большим арсеналом ракетных двигательных систем, основанных на использовании различных видов энергии. Но во всех случаях ракетный двигатель осуществляет одну и ту же задачу: он тем или иным способом выбрасывает из ракеты некоторую массу, запас которой (так называемое рабочее тело) находится внутри ракеты. На выбрасываемую массу со стороны ракеты действует некоторая сила, и согласно третьему закону механики Ньютона — закону равенства действия и противодействия — такая же сила, но противоположно направленная, действует со стороны выбрасываемой массы на ракету. Эта последняя сила, приводящая ракету в движение, называется силой тяги. Интуитивно ясно, что сила тяги должна быть тем больше, чем большая масса в единицу времени выбрасывается из ракеты и чем больше скорость, которую удается сообщить выбрасываемой массе.

Простейшая схема устройства ракеты:

Космические корабли России и США

Стремительный интерес к космосу возник в годы Холодной войны между СССР и США. Американские ученые признали в российских коллегах достойных соперников. Советское ракетостроение продолжало развиваться, и после распада государства его приемником стала Россия. Конечно, космолеты, накоторых летают российские космонавты, значительно отличаются от первых кораблей. Более того, сегодня, благодаря успешным разработкам американских ученых, космические корабли стали многоразовыми.

Космические корабли будущего

Сегодня все больший интерес вызывают проекты, в результате которых человечество сможет совершать более длительные путешествия. Современные разработки уже готовят корабли к межзвездным экспедициям.

Место, откуда запускают космические корабли

Увидеть своими глазами запуск космического корабля на старте — мечта многих. Возможно, это связано с тем, что первый запуск не всегда приводит к желаемому результату. Но благодаря Интернету мы можем увидеть, как взлетает корабль. Учитывая тот факт, что наблюдающим за запуском пилотируемого корабля следует находиться достаточно далеко, мы можем представить, что находимся на взлетной площадке.

Космический корабль: какой он внутри?

Сегодня, благодаря музейным экспонатам, мы воочию можем увидеть устройство таких кораблей, как Союз. Конечно, изнутри первые корабли были очень простыми. Интерьер более современных вариантов выдержан в спокойных тонах. Устройство любого космического корабля обязательно пугает нас множеством рычажков и кнопочек. И это добавляет гордости за тех, кто смог запомнить, как устроен корабль, и, тем более, научился управлять им.

На каких космических кораблях летают сейчас?

Новые космические корабли своим внешним видом подтверждают, что фантастика стала действительностью. Сегодня никого уже не удивишь тем, что стыковка космических кораблей — реальность. И мало кто помнит о том, что первая в мире такая стыковка произошла еще в далеком 1967 году…

Космическая гонка

Не так давно две могучие сверхдержавы находились в состоянии холодной войны. Это было похоже на бесконечное состязание. Многие этот промежуток времени предпочитают описывать как обычную гонку вооружений, но это совершенно не так. Это гонка науки. Именно ей мы обязаны многими гаджетами и благами цивилизации, к которым так привыкли.

Космическая гонка была лишь одним из важнейших элементов холодной войны. Всего за несколько десятилетий человек перешел от обычных атмосферных полетов к высадке на Луне. Это невероятный прогресс, если сравнивать с другими достижениями. В то прекрасное время люди думали, что освоение Марса — это куда более близкая и реальная задача, чем примирение СССР и США. Именно тогда люди были максимально увлечены космосом. Практически каждый студент или школьник понимал, как взлетает ракета. Это не было сложным знанием, наоборот. Такая информация была простой и очень интересной

Астрономия приобрела чрезвычайную важность среди других наук. В те годы никто и сказать не мог, что Земля плоская

Доступное образование повсеместно ликвидировало невежество. Однако те времена давно прошли, и сегодня все совсем не так.

Номер 5: линкор «Висконсин»

Линкор «Висконсин» был назван в честь американского штата Висконсин и был участником Второй мировой войны, награждён шестью боевыми звёздами. Эта машина предназначалась для быстрого перемещения, чтобы достичь места сражения или свести на нет наступление противника. Официальная максимальная скорость составляет 33 узла, однако известно много случаев, когда «Висконсин» достигал скорости 39 узлов. Скорость в 33 узла, по стандартам 21-го века по-прежнему считает нормой.

  • Название: USS Wisconsin
  • Страна: Соединенные Штаты Америки
  • Максимальная скорость: 33 узла [37,95 миль / ч или 61,1 км / ч]
  • Поддерживаемая скорость: 30 узлов [34.52 миль / ч или 55.57 км / ч]
  • Водоизмещение: 58 400 тонн при полной нагрузке
  • Введен в эксплуатацию: 1944 — 1991
  • Статус: музейное судно в Вирджинии

https://youtube.com/watch?v=_5IH-9lZ7b0

«Висконсин» видел и войну с Японией во Второй мировой войне, и Ирак в 1991 году. Это один из редких кораблей, которые списываются, возвращаются в строй и снова списываются. Теперь же это музейное судно. Кстати, «Висконсин» был введен в эксплуатацию и выведен из эксплуатации трижды, уступив только «Нью—Джерси», также упомянутому в этом списке.

Crew Dragon (США, 2020 год)

Многоразовый пилотируемый аппарат SpaceX Crew Dragon, запуск которого из-за плохой погоды был перенесен с 27 мая на ​​30 мая, должен доставить на МКС двух астронавтов: Боба Бенкена и Дага Херли. В случае успеха корабль станет первым частным космическим аппаратом для доставки людей к МКС, кроме того, это будет первый запуск американского пилотируемого аппарата за последние 10 лет. 

Фото: SpaceX / Корабль Crew Dragon

Существует две версии корабля Dragon: грузовая Dragon 1 и пилотируемая Crew Dragon. В отличие от грузового корабля, пилотируемый способен стыковаться с МКС самостоятельно, без использования манипулятора станции. Кроме того, в Crew Dragon добавлены системы жизнеобеспечения. 

Корабль будет стартовать при помощи ракеты-носителя Falcon 9. Первоначально SpaceX сообщало, что посадка аппарата будет управляемой и проходить на двигателях и выдвижных опорах для мягкой посадки, в качестве резерва будет парашютная схема. По словам разработчиков, благодаря двигателям SuperDraco аппарат был бы способен приземляться практически в любом месте с точностью вертолета, а возможность управляемой посадки сохранилась бы даже при отказе 2 из 8 двигателей. Но в 2017 году компания отказалась от управляемой посадки с использованием двигателей SuperDraco из-за сложности сертификации этой системы для пилотируемых полетов и рассказала, что корабль будет приводняться при помощи парашютов.

По данным SpaceX, в кабине Crew Dragon могут разместиться от 4 до 7 человек.

Основой для написания этого материала послужила статья «Here’s every spaceship that’s ever carried an astronaut into orbit». Все ссылки на источники есть в статье, опубликованной на английском языке.

О новых публикациях на сайте вы можете узнать из наших групп в соцсетях. Подписывайтесь: , , , , Telegram

У нас выходят и материалы, которые мы не публикуем на сайте, а размещаем на каналах. Заходите и читайте: и Instagram

Четвёртая и пятая космическая скорости

Четвёртая космическая скорость — минимально необходимая скорость тела без двигателя, позволяющая преодолеть притяжение галактики Млечный Путь. Она используется довольно редко.

Четвёртая космическая скорость не постоянна для всех точек Галактики, а зависит от расстояния до центральной массы.

По грубым предварительным расчётам в районе нашего Солнца четвёртая космическая скорость составляет около 550 км/с. Значение сильно зависит не только (и не столько) от расстояния до центра галактики, а от распределения масс вещества по Галактике, о которых пока нет точных данных, ввиду того что видимая материя составляет лишь малую часть общей гравитирующей массы, а все остальное — скрытая масса.

Ещё реже в некоторых источниках встречается понятие «пятая космическая скорость». Это скорость, позволяющая добраться до иной планеты звездной системы вне зависимости от разности плоскостей эклиптики планет. Например, для Солнечной системы и, конкретно, для Земли, чтобы орбита межпланетного перелета была перпендикулярной к земной орбите, нужна скорость запуска 43,6 километра в секунду.

Видео

Источники

  • https://ru.wikipedia.org/wiki/Космическая_скоростьhttps://mirznanii.com/a/9233/kosmicheskie-skorostihttp://www.astronet.ru/db/msg/1162252https://fb.ru/article/54389/kosmicheskaya-skorost
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector